2D conjugated microporous polyacetylenes synthesized via halogen-bond-assisted radical solid-phase polymerization for high-performance metal-ion absorbents

Hong Tho Le, Chen Gang Wang, Atsushi Goto*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

The paper reports the first free-radical solid-phase polymerization (SPP) of acetylenes. Acetylene monomers were co-crystalized using halogen bonding, and the obtained cocrystals were polymerized. Notably, because of the alignment of acetylene monomers in the cocrystals, the adjacent C≡C groups were close enough to undergo radical polymerization effectively, enabling the radically low-reactive acetylene monomers to generate high-molecular-weight polyacetylenes that are unattainable in solution-phase radical polymerizations. Furthermore, the SPP of a crosslinkable diacetylene monomer yielded networked two-dimensional conjugated microporous polymers (2D CMPs), where 2D porous polyacetylene nanosheets were cumulated in layer-by-layer manners. Because of the porous structures, the obtained 2D CMPs worked as highly efficient and selective adsorbents of lithium (Li+) and boronium (B3+) ions, adsorbing up to 312 mg of Li+ (31.2 wt%) and 196 mg of B3+ (19.6 wt%) per 1 g of CMP. This Li+ adsorption capacity is the highest ever record in the area of Li+ adsorption.

Original languageEnglish
Article number171
JournalNature Communications
Volume14
Issue number1
DOIs
Publication statusPublished - Dec 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).

ASJC Scopus Subject Areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of '2D conjugated microporous polyacetylenes synthesized via halogen-bond-assisted radical solid-phase polymerization for high-performance metal-ion absorbents'. Together they form a unique fingerprint.

Cite this