Abstract
The performance of modular multilevel converters (MMCs) in medium-voltage applications, where the number of required submodules is not high, can be improved utilizing low switching frequency modulations such as (2N+1) selective harmonic elimination-pulse width modulation (SHE-PWM), which provides tight control of lower order harmonics and low switching losses. This paper proposes a calculation method, which is based on a novel formulation, to solve the SHE-PWM problem. In particular, MMCs with (2N+1) phase output voltage levels are considered, obtaining a (2N+1) SHE-PWM waveform. This method utilizes a unique system of equations that is valid for any possible waveform. Therefore, it is able to calculate simultaneously, without predefined waveforms, both the switching patterns and the associated firing angles that solve the (2N+1) SHE-PWM problem. Consequently, the search process is simplified and optimized. Furthermore, this paper also proposes a circulating current control technique, which can be applied along with (2N+1) SHE-PWM without disturbing the phase output voltage. Simulation results and experimental tests obtained with a single-phase laboratory prototype prove the validity of the novel (2N+1) SHE-PWM implementation method and the proposed circulating current control technique.
Original language | English |
---|---|
Article number | 7849220 |
Pages (from-to) | 802-818 |
Number of pages | 17 |
Journal | IEEE Transactions on Power Electronics |
Volume | 33 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2018 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 1986-2012 IEEE.
ASJC Scopus Subject Areas
- Electrical and Electronic Engineering
Keywords
- Circulating current
- modular multilevel converter (MMC)
- optimization algorithms
- selective harmonic elimination (SHE)