3D Airway Epithelial-Fibroblast Biomimetic Microfluidic Platform to Unravel Engineered Nanoparticle-Induced Acute Stress Responses as Exposome Determinants

Melissa Kao Hui Lee, Hong Kit Lim, Chengxun Su, Jie Yan Cheryl Koh, Magdiel Inggrid Setyawati, Kee Woei Ng, Han Wei Hou*, Chor Yong Tay*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Insights into how biological systems respond to high- and low-dose acute environmental stressors are a fundamental aspect of exposome research. However, studying the impact of low-level environmental exposure in conventional in vitro settings is challenging. This study employed a three-dimensional (3D) biomimetic microfluidic lung-on-chip (μLOC) platform and RNA-sequencing to examine the effects of two model anthropogenic engineered nanoparticles (NPs): zinc oxide nanoparticles (Nano-ZnO) and copier center nanoparticles (Nano-CCP). The airway epithelium exposed to these NPs exhibited dose-dependent increases in cytotoxicity and barrier dysregulation (dominance of the external exposome). Interestingly, even nontoxic and low-level exposure (10 μg/mL) of the epithelium compartment to Nano-ZnO triggered chemotaxis of lung fibroblasts toward the epithelium. An increase in α smooth muscle actin (α-SMA) expression and contractile activity was also observed in these cells, indicating a bystander-like adaptive response (dominance of internal exposome). Further bioinformatics and network analysis showed that a low-dose Nano-ZnO significantly induced a robust transcriptomic response and upregulated several hub genes associated with the development of lung fibrosis. We propose that Nano-ZnO, even at a no observable effect level (NOEL) dose according to conventional standards, can function as a potent nanostressor to disrupt airway epithelium homeostasis. This leads to a cascade of profibrotic events in a cross-tissue compartment fashion. Our findings offer new insights into the early acute events of respiratory harm associated with environmental NPs exposure, paving the way for better exposomic understanding of this emerging class of anthropogenic nanopollutants.

Original languageEnglish
Pages (from-to)19223-19235
Number of pages13
JournalEnvironmental Science and Technology
Volume57
Issue number48
DOIs
Publication statusPublished - Dec 5 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023 American Chemical Society.

ASJC Scopus Subject Areas

  • General Chemistry
  • Environmental Chemistry

Keywords

  • acute oxidative stress response
  • engineered nanoparticles
  • exposome
  • lung fibrosis
  • lung-on-chip
  • paracrine signaling

Fingerprint

Dive into the research topics of '3D Airway Epithelial-Fibroblast Biomimetic Microfluidic Platform to Unravel Engineered Nanoparticle-Induced Acute Stress Responses as Exposome Determinants'. Together they form a unique fingerprint.

Cite this