Abstract
We propose a Transformer-based framework for 3D human texture estimation from a single image. The proposed Transformer is able to effectively exploit the global information of the input image, overcoming the limitations of existing methods that are solely based on convolutional neural networks. In addition, we also propose a mask-fusion strategy to combine the advantages of the RGB-based and texture-flow-based models. We further introduce a part-style loss to help reconstruct high-fidelity colors without introducing unpleasant artifacts. Extensive experiments demonstrate the effectiveness of the proposed method against state-of-the-art 3D human texture estimation approaches both quantitatively and qualitatively. The project page is at https://www.mmlab-ntu.com/project/texformer.
Original language | English |
---|---|
Title of host publication | Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 13829-13838 |
Number of pages | 10 |
ISBN (Electronic) | 9781665428125 |
DOIs | |
Publication status | Published - 2021 |
Externally published | Yes |
Event | 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada Duration: Oct 11 2021 → Oct 17 2021 |
Publication series
Name | Proceedings of the IEEE International Conference on Computer Vision |
---|---|
ISSN (Print) | 1550-5499 |
Conference
Conference | 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 |
---|---|
Country/Territory | Canada |
City | Virtual, Online |
Period | 10/11/21 → 10/17/21 |
Bibliographical note
Publisher Copyright:© 2021 IEEE
ASJC Scopus Subject Areas
- Software
- Computer Vision and Pattern Recognition