Abstract
Coulomb repulsion in multiply charged ions (MCIs) is mitigated by long-range electrostatic interaction with the distant charge separation and delocalized systems. Meanwhile, MCIs featuring the charged centers located at two directly connected atoms (E+/−–E+/−) bear a strong repulsive force, which leads to electron detachment or molecular fragmentation, namely, Coulomb explosion. Here, we describe the synthesis of a trianionic triangular triboron species (B3R63−) through the reductive dealumination from a Cp∗AlB3R6 anion (Cp∗, 1,2,3,4,5-pentamethylcyclopentadienyl). X-ray crystallographic and spectroscopic analyses with the aid of quantum chemical calculations reveal that despite the triply negatively charged skeleton, the B3 core is tightly held by electron-precise B–B bonds, overcoming Coulomb repulsion. In contrast to the extant electron-deficient triborate rings, this molecule exhibits reducing ability and nucleophilicity; thus, it undergoes not only electron transfer but also cyclization and salt metathesis reactions, demonstrating its trait as elusive (R2B−) and ([R2B]22−) surrogates.
Original language | English |
---|---|
Journal | Chem |
DOIs | |
Publication status | Accepted/In press - 2024 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2024 Elsevier Inc.
ASJC Scopus Subject Areas
- General Chemistry
- Biochemistry
- Environmental Chemistry
- General Chemical Engineering
- Biochemistry, medical
- Materials Chemistry
Keywords
- Coulomb repulsion
- crystal structure
- multiply charged ions
- SDG9: Industry, innovation, and infrastructure
- trianion
- triboron