A depth-profiling study on the solid electrolyte interface: Bis(fluorosulfuryl)imide anion toward improved k+ storage

Huanhuan Wang, Haisheng Wang, Shi Chen, Bowei Zhang, Guang Yang, Peng Gao, Jilei Liu*, Xiaofeng Fan, Yizhong Huang, Jianyi Lin, Zexiang Shen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

61 Citations (Scopus)

Abstract

The solid electrolyte interface (SEI) significantly affects alkaline metal ion battery performance in terms of reversible capacity, Coulombic efficiency, and cycling stability. However, intrinsic properties of SEI layer in potassium ion batteries (KIBs), including structures, components, formation mechanism, and corresponding K+ storage behavior, are poorly understood. Here, we focus on the effect of electrolyte on SEI formation and K+ storage behavior in self-supported nitrogen-doped graphite foams (NGFs). Two types of organic electrolytes, KPF6 and KN(SO2F)2 (KFSI) salt in EC/DEC solution, were carefully selected and compared in detail to reveal the effect of SEI on the K+ ion storage mechanism. The experimental results, including in situ electrochemical evaluations and depth-profiling XPS analysis, demonstrate that the salts of KFSI result in a more uniform, stable, and thinner SEI layer compared with the SEI induced by KPF6. Particularly, the KFSI-induced SEI is rich in stable and uniformly distributed inorganic species and polycarbonates, whereas the KPF6-induced SEI is mainly composed of instable alkyl carbonates. This could be attributed to the larger FSI- size over PF6 - and lower LUMO levels than solvents according to theoretical calculations, which effectively prevent SEI from co-intercalation damage, thus leading to high stability of the as-obtained SEI layer. In general, the above-mentioned features could ensure high reversibility and good cycling stability of the self-supported NGFs electrode in KFSI-based electrolyte.

Original languageEnglish
Pages (from-to)7942-7951
Number of pages10
JournalACS Applied Energy Materials
Volume2
Issue number11
DOIs
Publication statusPublished - Nov 25 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
Copyright © 2019 American Chemical Society.

ASJC Scopus Subject Areas

  • Chemical Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Electrochemistry
  • Materials Chemistry
  • Electrical and Electronic Engineering

Keywords

  • bis(fluorosulfuryl)imide
  • depth-profiling characterizations
  • potassium ion batteries
  • reversibility and stability
  • solid electrolyte interphase

Fingerprint

Dive into the research topics of 'A depth-profiling study on the solid electrolyte interface: Bis(fluorosulfuryl)imide anion toward improved k+ storage'. Together they form a unique fingerprint.

Cite this