A Lightweight Optical Flow CNN - Revisiting Data Fidelity and Regularization

Tak Wai Hui*, Xiaoou Tang, Chen Change Loy

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

132 Citations (Scopus)

Abstract

Over four decades, the majority addresses the problem of optical flow estimation using variational methods. With the advance of machine learning, some recent works have attempted to address the problem using convolutional neural network (CNN) and have showed promising results. FlowNet2 [1] , the state-of-the-art CNN, requires over 160M parameters to achieve accurate flow estimation. Our LiteFlowNet2 outperforms FlowNet2 on Sintel and KITTI benchmarks, while being 25.3 times smaller in the model size and 3.1 times faster in the running speed. LiteFlowNet2 is built on the foundation laid by conventional methods and resembles the corresponding roles as data fidelity and regularization in variational methods. We compute optical flow in a spatial-pyramid formulation as SPyNet [2] but through a novel lightweight cascaded flow inference. It provides high flow estimation accuracy through early correction with seamless incorporation of descriptor matching. Flow regularization is used to ameliorate the issue of outliers and vague flow boundaries through feature-driven local convolutions. Our network also owns an effective structure for pyramidal feature extraction and embraces feature warping rather than image warping as practiced in FlowNet2 and SPyNet. Comparing to LiteFlowNet [3] , LiteFlowNet2 improves the optical flow accuracy on Sintel Clean by 23.3 percent, Sintel Final by 12.8 percent, KITTI 2012 by 19.6 percent, and KITTI 2015 by 18.8 percent, while being 2.2 times faster. Our network protocol and trained models are made publicly available on https://github.com/twhui/LiteFlowNet2.

Original languageEnglish
Article number9018073
Pages (from-to)2555-2569
Number of pages15
JournalIEEE Transactions on Pattern Analysis and Machine Intelligence
Volume43
Issue number8
DOIs
Publication statusPublished - Aug 1 2021
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 1979-2012 IEEE.

ASJC Scopus Subject Areas

  • Software
  • Computer Vision and Pattern Recognition
  • Computational Theory and Mathematics
  • Artificial Intelligence
  • Applied Mathematics

Keywords

  • and warping
  • Convolutional neural network
  • cost volume
  • deep learning
  • optical flow
  • regularization
  • spatial pyramid

Cite this