TY - JOUR
T1 - A modified CD34+ hematopoietic stem and progenitor cell isolation strategy from cryopreserved human umbilical cord blood
AU - Mata, Marcia F.
AU - Hernandez, Diana
AU - Rologi, Evangelia
AU - Grandolfo, Davide
AU - Hassan, Enas
AU - Hua, Peng
AU - Kallmeier, Robert
AU - Hirani, Swatisha
AU - Heuts, Frank
AU - Tittrea, Vickram
AU - Choo, Yen
AU - Baradez, Marc Olivier
AU - Watt, Suzanne M.
AU - Tarunina, Marina
N1 - Publisher Copyright:
© 2019 AABB
PY - 2019/12/1
Y1 - 2019/12/1
N2 - BACKGROUND: Umbilical cord blood (UCB) is a source of hematopoietic stem cells for transplantation, offering an alternative for patients unable to find a matched adult donor. UCB is also a versatile source of hematopoietic stem and progenitor cells (hCD34 + HSPCs) for research into hematologic diseases, in vitro expansion, ex vivo gene therapy, and adoptive immunotherapy. For these studies, there is a need to isolate hCD34 + HSPCs from cryopreserved units, and protocols developed for isolation from fresh cord blood are unsuitable. STUDY DESIGN: This study describes a modified method for isolating hCD34 + HSPCs from cryopreserved UCB. It uses the Plasmatherm system for thawing, followed by CD34 microbead magnetic-activated cell sorting isolation with a cell separation kit (Whole Blood Columns, Miltenyi Biotec). hCD34 + HSPC phenotypes and functionality were assessed in vitro and hematologic reconstitution determined in vivo in immunodeficient mice. RESULTS: Total nucleated cell recovery after thawing and washing was 44.7 ± 11.7%. Recovery of hCD34 + HSPCs after application of thawed cells to Whole Blood Columns was 77.5 ± 22.6%. When assessed in two independent laboratories, the hCD34+ cell purities were 71.7 ± 10.7% and 87.8 ± 2.4%. Transplantation of the enriched hCD34 + HSPCs into NSG mice revealed the presence of repopulating hematopoietic stem cells (estimated frequency of 0.07%) and multilineage engraftment. CONCLUSION: This provides a simplified protocol for isolating high-purity human CD34 + HSPCs from banked UCB adaptable to current Good Manufacturing Practice. This protocol reduces the number of steps and associated risks and thus total production costs. Importantly, the isolated CD34 + HSPCs possess in vivo repopulating activity in immunodeficient mice, making them a suitable starting population for ex vivo culture and gene editing.
AB - BACKGROUND: Umbilical cord blood (UCB) is a source of hematopoietic stem cells for transplantation, offering an alternative for patients unable to find a matched adult donor. UCB is also a versatile source of hematopoietic stem and progenitor cells (hCD34 + HSPCs) for research into hematologic diseases, in vitro expansion, ex vivo gene therapy, and adoptive immunotherapy. For these studies, there is a need to isolate hCD34 + HSPCs from cryopreserved units, and protocols developed for isolation from fresh cord blood are unsuitable. STUDY DESIGN: This study describes a modified method for isolating hCD34 + HSPCs from cryopreserved UCB. It uses the Plasmatherm system for thawing, followed by CD34 microbead magnetic-activated cell sorting isolation with a cell separation kit (Whole Blood Columns, Miltenyi Biotec). hCD34 + HSPC phenotypes and functionality were assessed in vitro and hematologic reconstitution determined in vivo in immunodeficient mice. RESULTS: Total nucleated cell recovery after thawing and washing was 44.7 ± 11.7%. Recovery of hCD34 + HSPCs after application of thawed cells to Whole Blood Columns was 77.5 ± 22.6%. When assessed in two independent laboratories, the hCD34+ cell purities were 71.7 ± 10.7% and 87.8 ± 2.4%. Transplantation of the enriched hCD34 + HSPCs into NSG mice revealed the presence of repopulating hematopoietic stem cells (estimated frequency of 0.07%) and multilineage engraftment. CONCLUSION: This provides a simplified protocol for isolating high-purity human CD34 + HSPCs from banked UCB adaptable to current Good Manufacturing Practice. This protocol reduces the number of steps and associated risks and thus total production costs. Importantly, the isolated CD34 + HSPCs possess in vivo repopulating activity in immunodeficient mice, making them a suitable starting population for ex vivo culture and gene editing.
UR - http://www.scopus.com/inward/record.url?scp=85075726388&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075726388&partnerID=8YFLogxK
U2 - 10.1111/trf.15597
DO - 10.1111/trf.15597
M3 - Article
C2 - 31769050
AN - SCOPUS:85075726388
SN - 0041-1132
VL - 59
SP - 3560
EP - 3569
JO - Transfusion
JF - Transfusion
IS - 12
ER -