Abstract
Developing supercapacitor electrodes with an ultra-long cycle life and a high specific capacitance is critical to the future energy storage devices. Herein, we report a scalable synthesis technology of mixed-valence manganese oxide nanoparticles anchored to reduced graphene oxide (rGO/MnOx) as the high-performance supercapacitor electrodes. First, 2-dimensional (2D) δ-MnO2 nanosheets are formed on a graphene oxide (GO) template, which is then in situ reduced by hydrazine vapour to mixed-valence manganese oxide nanoparticles evenly distributed on a rGO conductive network. The obtained rGO/MnOx electrode material exhibits a high specific capacitance of 202 F g-1 (mass loading of 2 mg cm-2), a large areal specific capacitance of 2.5 F cm-2 (mass loading of up to 19 mg cm-2), and a super-long-life stability of 106% capacitance retention after 115 000 charge/discharge cycles. By using an ionic liquid electrolyte and an activated carbon anode, asymmetric supercapacitors (AScs) are also constructed and can be packaged into a high performance miniaturized energy storage component in either a tailorable or surface mountable configuration. Our ASc shows superior performance characteristics, with typical figures of merit including maximum energy densities of 47.9 W h kg-1 at 270 W kg-1 and 19.1 W h kg-1 at the maximum power density of 20.8 kW kg-1. The capacitance retention of the ASc is 96% after 80 000 charge/discharge cycles, which is the most excellent stability performance in an ionic liquid electrolyte as compared with the recently reported pseudo-supercapacitors. This technology may find vast applications in future miniaturized portable and wearable electronics.
Original language | English |
---|---|
Pages (from-to) | 941-949 |
Number of pages | 9 |
Journal | Energy and Environmental Science |
Volume | 10 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© The Royal Society of Chemistry 2017.
ASJC Scopus Subject Areas
- Environmental Chemistry
- Renewable Energy, Sustainability and the Environment
- Nuclear Energy and Engineering
- Pollution