TY - JOUR
T1 - Acene-based organic semiconductors for organic light-emitting diodes and perovskite solar cells
AU - Pham, Hong Duc
AU - Hu, Hongwei
AU - Wong, Fu Lung
AU - Lee, Chun Sing
AU - Chen, Wen Cheng
AU - Feron, Krishna
AU - Manzhos, Sergei
AU - Wang, Hongxia
AU - Motta, Nunzio
AU - Lam, Yeng Ming
AU - Sonar, Prashant
N1 - Publisher Copyright:
© 2018 The Royal Society of Chemistry.
PY - 2018
Y1 - 2018
N2 - In this work, three novel acene-based organic semiconductors, including 2,7-bis(trimethylstannyl)naphtho[2,1-b:6,5-b′]dithiophene (TPA-NADT-TPA), 4,4′-(anthracene-2,6-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) (TPA-ANR-TPA) and N2,N2,N6,N6-tetrakis(4-methoxyphenyl)anthracene-2,6-diamine (DPA-ANR-DPA), are designed and synthesized for use in organic light-emitting diodes (OLEDs) and perovskite solar cells (PSCs). In OLEDs, devices based on TPA-NADT-TPA, TPA-ANR-TPA and DPA-ANR-DPA showed pure blue, blue green, and green emission, respectively. Also, the maximum brightness of the devices with a turn-on voltage of 3.8 V reached 8682 cd m-2 for TPA-NADT-TPA, 11180 cd m-2 for TPA-ANR-TPA, and 18 600 cd m-2 for DPA-ANR-DPA. These new materials are also employed as hole transporting materials (HTMs) in inverted PSCs, where they were used without additives. The inverted devices based on these HTMs achieved an overall efficiency of 10.27% for TPA-NADT-TPA, 7.54% for TPA-ANR-TPA, and 6.05% for DPA-ANR-DPA under identical conditions (AM 1.5G and 100 mW cm-2). While the PSCs with TPA-NADT-TPA as the HTM achieved the highest efficiency, the DPA-ANR-DPA-based OLED devices showed the brightest emission and efficiency. Based on the obtained promising performance, it is clear that this molecular design presents a new research strategy to develop materials that can be used in multiple types of devices.
AB - In this work, three novel acene-based organic semiconductors, including 2,7-bis(trimethylstannyl)naphtho[2,1-b:6,5-b′]dithiophene (TPA-NADT-TPA), 4,4′-(anthracene-2,6-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) (TPA-ANR-TPA) and N2,N2,N6,N6-tetrakis(4-methoxyphenyl)anthracene-2,6-diamine (DPA-ANR-DPA), are designed and synthesized for use in organic light-emitting diodes (OLEDs) and perovskite solar cells (PSCs). In OLEDs, devices based on TPA-NADT-TPA, TPA-ANR-TPA and DPA-ANR-DPA showed pure blue, blue green, and green emission, respectively. Also, the maximum brightness of the devices with a turn-on voltage of 3.8 V reached 8682 cd m-2 for TPA-NADT-TPA, 11180 cd m-2 for TPA-ANR-TPA, and 18 600 cd m-2 for DPA-ANR-DPA. These new materials are also employed as hole transporting materials (HTMs) in inverted PSCs, where they were used without additives. The inverted devices based on these HTMs achieved an overall efficiency of 10.27% for TPA-NADT-TPA, 7.54% for TPA-ANR-TPA, and 6.05% for DPA-ANR-DPA under identical conditions (AM 1.5G and 100 mW cm-2). While the PSCs with TPA-NADT-TPA as the HTM achieved the highest efficiency, the DPA-ANR-DPA-based OLED devices showed the brightest emission and efficiency. Based on the obtained promising performance, it is clear that this molecular design presents a new research strategy to develop materials that can be used in multiple types of devices.
UR - http://www.scopus.com/inward/record.url?scp=85052599307&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052599307&partnerID=8YFLogxK
U2 - 10.1039/c8tc01956h
DO - 10.1039/c8tc01956h
M3 - Article
AN - SCOPUS:85052599307
SN - 2050-7534
VL - 6
SP - 9017
EP - 9029
JO - Journal of Materials Chemistry C
JF - Journal of Materials Chemistry C
IS - 33
ER -