Abstract
Tuning the mass density and bulk modulus independently is the key to manipulate the propagation of sound wave. Acoustic metamaterials provide a feasible method to realize various acoustic parameters. However, the relevant studies are mainly concentrated in air, and the huge impedance difference makes it difficult to directly extend these airborne structures to underwater application. Here, we propose a metafluid to realize independent manipulation of the mass density and bulk modulus underwater. The metafluid is composed of hollow regular polygons immersed in the water. By adjusting the side number of the hollow regular polygons and choosing proper materials, the effective mass density and bulk modulus of the metafluid could be modulated independently. Based on the flexible adjustment method, metafluids with same impedance but different sound velocities are designed and used to realize an underwater impedance-matched gradient index lens. In addition, by combining the proposed metafluid with other artificial structures, acoustic parameters with great anisotropy can be achieved, which is exemplified by the design and demonstration of an impedance-matched underwater acoustic carpet cloak. This work can expand the practicability of underwater metamaterials and pave the way for future potential engineering applications in the practical underwater devices.
Original language | English |
---|---|
Article number | 112248 |
Journal | Materials and Design |
Volume | 233 |
DOIs | |
Publication status | Published - Sept 2023 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2023 The Authors
ASJC Scopus Subject Areas
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering
Press/Media
-
Chinese Academy of Sciences Researchers Describe Research in Materials and Design (Acoustic metafluid for independent manipulation of the mass density and bulk modulus)
9/13/23
1 item of Media coverage
Press/Media: Research