Abstract
Tumor immunometabolism contributes substantially to tumor proliferation and immune cell activity, and thus plays a crucial role in the efficacy of cancer immunotherapy. Modulation of immunometabolism to boost cancer immunotherapy is mostly based on small-molecule inhibitors, which often encounter the issues of off-target adverse effects, drug resistance, and unsustainable response. In contrast, enzymatic therapeutics can potentially bypass these limitations but has been less exploited. Herein, an organic polymer nanoenzyme (SPNK) with near-infrared (NIR) photoactivatable immunotherapeutic effects is reported for photodynamic immunometabolic therapy. SPNK is composed of a semiconducting polymer core conjugated with kynureninase (KYNase) via PEGylated singlet oxygen (1O2) cleavable linker. Upon NIR photoirradiation, SPNK generates 1O2 not only to exert photodynamic effect to induce the immunogenic cell death of cancer, but also to unleash KYNase and trigger its activity to degrade the immunosuppressive kynurenine (Kyn). Such a combinational effect mediated by SPNK promotes the proliferation and infiltration of effector T cells, enhances systemic antitumor T cell immunity, and ultimately permits inhibition of both primary and distant tumors in living mice. Therefore, this study provides a promising photodynamic approach toward remotely controlled enzymatic immunomodulation for improved anticancer therapy.
Original language | English |
---|---|
Article number | 2007247 |
Journal | Advanced Materials |
Volume | 33 |
Issue number | 4 |
DOIs | |
Publication status | Published - Jan 27 2021 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2020 Wiley-VCH GmbH
ASJC Scopus Subject Areas
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering
Keywords
- cancer therapy
- immunotherapy
- organic nanoparticles
- photoactivation
- photodynamic therapy