Abstract
Peptidoglycan recognition proteins (PGRPs), which have been identified in most animals, are pattern recognition molecules that involve antimicrobial defense. Resulting from extraordinary expansion of innate immune genes, the amphioxus encodes many PGRPs of diverse functions. For instance, three isoforms of PGRP encoded by Branchiostoma belcheri tsingtauense, termed BbtPGRP1~3, are fused with a chitin binding domain (CBD) at the N-terminus. Here we report the 2.7 A crystal structure of BbtPGRP3, revealing an overall structure of an N-terminal hevein-like CBD followed by a catalytic PGRP domain. Activity assays combined with site-directed mutagenesis indicated that the individual PGRP domain exhibits amidase activity towards both DAP-type and Lys-type peptidoglycans (PGNs), the former of which is favored. The N-terminal CBD not only has the chitin-binding activity, but also enables BbtPGRP3 to gain a five-fold increase of amidase activity towards the Lystype PGNs, leading to a significantly broadened substrate spectrum. Together, we propose that modular evolution via domain shuffling combined with gene horizontal transfer makes BbtPGRP1-3 novel PGRPs of augmented catalytic activity and broad recognition spectrum.
Original language | English |
---|---|
Article number | e0140953 |
Journal | PLoS One |
Volume | 10 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 19 2015 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2015 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
ASJC Scopus Subject Areas
- General