Abstract
Flow-induced vibrations (FIVs) serve as the fundamental principle of non-rotary wind energy harvesting. However, nanogenerators relying on a single FIV effect remain constrained by insufficient breeze energy conversion efficiency. In this paper, we propose a novel galloping-flutter coupled nanogenerator (GFNG) that leverages the synergistic interaction between these two aerodynamic phenomena, to achieve high performance across broad wind speed bandwidth. A galloping-flutter coupled mechanism (GFM) is implemented using a multifunctional flexible beam that integrates a galloping piezoelectric energy harvester (GPEH) and a fluttering triboelectric nanogenerator (FTENG). Through meticulous optimization, it significantly enhances the average electrical output of the FTENG by up to six times at low wind speeds below 6 m s−1, by intensifying the triboelectric contact behavior through galloping-induced beam oscillations. The GFNG demonstrates a maximum average power of 6.3 mW across wind speeds from 1.4 to 10 m s−1, along with a remarkable power density of 7.1 W m−2 of the enhanced FTENG at 10 m s−1, enabling the lighting of 508 LEDs and stable power supply for wireless sensor nodes (WSNs). This study offers new insights into designing high-performance aerodynamics-driven nanogenerators by harnessing multiple FIV synergistic effects, broadening the potential for intelligent wind energy applications.
Original language | English |
---|---|
Journal | Advanced Functional Materials |
DOIs | |
Publication status | Accepted/In press - 2024 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2024 Wiley-VCH GmbH.
ASJC Scopus Subject Areas
- Electronic, Optical and Magnetic Materials
- General Chemistry
- Biomaterials
- General Materials Science
- Condensed Matter Physics
- Electrochemistry
Keywords
- flow-induced vibration
- piezoelectric
- triboelectric
- wind energy harvesting
- wireless sensor node
Fingerprint
Dive into the research topics of 'Advanced Aerodynamics-Driven Energy Harvesting Leveraging Galloping-Flutter Synergy'. Together they form a unique fingerprint.Press/Media
-
Investigators at Nanyang Technological University Describe Findings in Wind Energy (Advanced Aerodynamics-driven Energy Harvesting Leveraging Galloping-flutter Synergy)
12/18/24
1 item of Media coverage
Press/Media: Research