Abstract
Insufficient thermal stability of vanadium redox flow battery (VRFB) electrolytes at elevated temperatures (>40 °C) remains a challenge in the development and commercialization of this technology, which otherwise presents a broad range of technological advantages for the long-term storage of intermittent renewable energy. Herein, a new concept of combined additives is presented, which significantly increases thermal stability of the battery, enabling safe operation to the highest temperature (50 °C) tested to date. This is achieved by combining two chemically distinct additives—inorganic ammonium phosphate and polyvinylpyrrolidone (PVP) surfactant, which collectively decelerate both protonation and agglomeration of the oxo-vanadium species in solution and thereby significantly suppress detrimental formation of precipitates. Specifically, the precipitation rate is reduced by nearly 75% under static conditions at 50° C. This improvement is reflected in the robust operation of a complete VRFB device for over 300 h of continuous operation at 50 °C, achieving an impressive 83% voltage efficiency at 100 mA cm‒2 current density, with no precipitation detected in either the electrode/flow-frame or electrolyte tank.
Original language | English |
---|---|
Article number | 2311771 |
Journal | Small |
Volume | 20 |
Issue number | 27 |
DOIs | |
Publication status | Published - Jul 4 2024 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2024 The Authors. Small published by Wiley-VCH GmbH.
ASJC Scopus Subject Areas
- Biotechnology
- General Chemistry
- Biomaterials
- General Materials Science
- Engineering (miscellaneous)
Keywords
- combined additive
- dynamic condition
- electrolyte
- large-scale energy storage
- thermal stability
- vanadium redox flow batteries