Abstract
Pre-trained vision-language models (VLMs) learn to align vision and language representations on large-scale datasets, where each image-text pair usually contains a bag of semantic concepts. However, existing open-vocabulary object detectors only align region embeddings individually with the corresponding features extracted from the VLMs. Such a design leaves the compositional structure of semantic concepts in a scene under-exploited, although the structure may be implicitly learned by the VLMs. In this work, we propose to align the embedding of bag of regions beyond individual regions. The proposed method groups contextually interrelated regions as a bag. The embeddings of regions in a bag are treated as embeddings of words in a sentence, and they are sent to the text encoder of a VLM to obtain the bag-of-regions embedding, which is learned to be aligned to the corresponding features extracted by a frozen VLM. Applied to the commonly used Faster R-CNN, our approach surpasses the previous best results by 4.6 box AP50 and 2.8 mask AP on novel categories of open-vocabulary COCO and LVIS benchmarks, respectively. Code and models are available at https://github.com/wusize/ovdet.
Original language | English |
---|---|
Title of host publication | Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 |
Publisher | IEEE Computer Society |
Pages | 15254-15264 |
Number of pages | 11 |
ISBN (Electronic) | 9798350301298 |
DOIs | |
Publication status | Published - 2023 |
Externally published | Yes |
Event | 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Canada Duration: Jun 18 2023 → Jun 22 2023 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Volume | 2023-June |
ISSN (Print) | 1063-6919 |
Conference
Conference | 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 |
---|---|
Country/Territory | Canada |
City | Vancouver |
Period | 6/18/23 → 6/22/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.
ASJC Scopus Subject Areas
- Software
- Computer Vision and Pattern Recognition
Keywords
- detection
- Recognition: Categorization
- retrieval