Abstract
Fluorescence imaging in the second near-infrared (NIR-II) window holds great promise for in vivo visualization of amyloid-β (Aβ) pathology, which can facilitate characterization and deep understanding of Alzheimer's disease (AD); however, it has been rarely exploited. Herein, we report the development of NIR-II fluorescent reporters with a donor-π-acceptor (D-π-A) architecture for specific detection of Aβ plaques in AD-model mice. Among all the designed probes, DMP2 exhibits the highest affinity to Aβ fibrils and can specifically activate its NIR-II fluorescence after binding to Aβ fibrils via suppressed twisted intramolecular charge transfer (TICT) effect. With suitable lipophilicity for ideal blood–brain barrier (BBB) penetrability and deep-tissue penetration of NIR-II fluorescence, DMP2 possesses specific detection of Aβ plaques in in vivo AD-model mice. Thus, this study presents a potential agent for non-invasive imaging of Aβ plaques and deep deciphering of AD progression.
Original language | English |
---|---|
Article number | e202216351 |
Journal | Angewandte Chemie - International Edition |
Volume | 62 |
Issue number | 7 |
DOIs | |
Publication status | Published - Feb 6 2023 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2022 Wiley-VCH GmbH.
ASJC Scopus Subject Areas
- Catalysis
- General Chemistry
Keywords
- Activatable Probes
- Alzheimer's Disease
- Amyloid-Beta Plaques
- Detection
- Second Near-Infrared Fluorescence Imaging