Abstract
Discriminative detection of invasive and noninvasive breast cancers is crucial for their effective treatment and prognosis. However, activatable probes able to do so in vivo are rare. Herein, we report an activatable polymeric reporter (P-Dex) that specifically turns on near-infrared (NIR) fluorescent and photoacoustic (PA) signals in response to the urokinase-type plasminogen activator (uPA) overexpressed in invasive breast cancer. P-Dex has a renal-clearable dextran backbone that is linked with a NIR dye caged with an uPA-cleavable peptide substrate. Such a molecular design allows P-Dex to passively target tumors, activate NIR fluorescence and PA signals to effectively distinguish invasive MDA-MB-231 breast cancer from noninvasive MCF-7 breast cancer, and ultimately undergo renal clearance to minimize the toxicity potential. Thus, this polymeric reporter holds great promise for the early detection of malignant breast cancer.
Original language | English |
---|---|
Pages (from-to) | 7018-7023 |
Number of pages | 6 |
Journal | Angewandte Chemie - International Edition |
Volume | 59 |
Issue number | 18 |
DOIs | |
Publication status | Published - Apr 27 2020 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ASJC Scopus Subject Areas
- Catalysis
- General Chemistry
Keywords
- activatable probe
- cancer
- near-infrared fluorescent probes
- photoacoustic imaging
- polymers