Abstract
Food waste management is a major global issue, and alternative protein sources like insect farming offer a sustainable solution. This study investigated the environmental impacts of black soldier fly larvae (BSFL) production using a Life Cycle Assessment (LCA), evaluating its role in both protein production and food waste treatment. The assessment considered three functional units: FU1 (1 kg of dried larvae), FU2 (per kg of protein), and FU3 (treatment of 1 ton of food waste). The results indicate that larvae rearing is the largest contributor to emissions in FU1 (46% of 18.51 kg CO2 eq). In FU2, BSFL protein shows a higher climate impact (49.41 kg CO2 eq) than fishmeal or soybean meal but requires significantly less land. FU3 demonstrates that BSFL-based composting can achieve net negative emissions (~−24.8 kg CO2 eq), outperforming conventional waste treatment. An optimized scenario (Scenario A) shows marked improvements across all units compared to a Business-as-Usual case, including a 79% reduction in FU1 emissions and a 577% increase in FU3 carbon savings. These findings underline the environmental advantages of BSFL systems, especially in Singapore, and support their potential as sustainable alternatives for protein production and food waste management.
Original language | English |
---|---|
Article number | 6115 |
Journal | Sustainability |
Volume | 17 |
Issue number | 13 |
DOIs | |
Publication status | Published - Jul 2025 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2025 by the authors.
ASJC Scopus Subject Areas
- Computer Science (miscellaneous)
- Geography, Planning and Development
- Renewable Energy, Sustainability and the Environment
- Environmental Science (miscellaneous)
- Energy Engineering and Power Technology
- Hardware and Architecture
- Computer Networks and Communications
- Management, Monitoring, Policy and Law
Keywords
- black soldier fly
- circular economy
- climate change mitigation
- decentralized systems
- food waste recycling