Assessing uncertainty in operational modal analysis incorporating multiple setups using a Bayesian approach

Feng Liang Zhang*, Siu Kui Au, Heung Fai Lam

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

51 Citations (Scopus)

Abstract

A Bayesian statistical framework was previously developed for modal identification of well-separated modes incorporating ambient vibration data, that is, operational modal analysis, from multiple setups. An efficient strategy was developed for evaluating the most probable value of the modal parameters using an iterative procedure. As a sequel to the development, this paper investigates the posterior uncertainty of the modal parameters in terms of their covariance matrix, which is mathematically equal to the inverse of the Hessian of the negative log-likelihood function evaluated at the most probable value. Computational issues arising from the norm constraint of the global mode shape are addressed. Analytical expressions are derived for the Hessian so that it can be evaluated accurately and efficiently without resorting to finite difference. The proposed method is verified using synthetic and laboratory data. It is also applied to field test data, which reveals some challenges in operational modal analysis incorporating multiple setups.

Original languageEnglish
Pages (from-to)395-416
Number of pages22
JournalStructural Control and Health Monitoring
Volume22
Issue number3
DOIs
Publication statusPublished - Mar 1 2015
Externally publishedYes

Bibliographical note

Publisher Copyright:
Copyright © 2014 John Wiley & Sons, Ltd.

ASJC Scopus Subject Areas

  • Civil and Structural Engineering
  • Building and Construction
  • Mechanics of Materials

Keywords

  • ambient modal identification
  • Bayesian
  • field test
  • mode shape assembly
  • operational modal analysis
  • posterior uncertainty

Fingerprint

Dive into the research topics of 'Assessing uncertainty in operational modal analysis incorporating multiple setups using a Bayesian approach'. Together they form a unique fingerprint.

Cite this