Abstract
Polymer-nanoparticle-encapsulated doxorubicin (DOX) and paclitaxel (TAX) have the potential for novel therapeutic use against cancer in the clinic. However, the systemic biological effect of the nanoparticle material, namely, methoxypoly(ethylene glycol)-poly(lactide-co-glycolide) (mPEG-PLGA), and its encapsulated drugs have not been fully studied. We have applied NMR-based metabonomics methodology to characterize and analyze the systemic metabolic changes in mice after being exposed to mPEG-PLGA, mPEG-PLGA-encapsulated DOX and TAX (NP-D/T), and their free forms. The study revealed that mPEG-PLGA exposure only induces temporary and slight metabolic alternations and that there are detoxification effects of nanoparticle packed with D/T drugs on the heart when comparing with free-form D/T drugs. Both NP-D/T and their free forms induce a shift in energy metabolism, stimulate antioxidation pathways, and disturb the gut microbial activity of the host. However, mPEG-PLGA packaging can relieve the energy metabolism inhibition and decrease the activation of antioxidation pathways caused by D/T exposure. These findings provide a holistic insight into the biological effect of polymer nanoparticle and nanoparticle-encapsulated drugs. This study also furthers our understanding of the molecular mechanisms involved in the amelioration effects of mPEG-PLGA packaging on the toxicity of the incorporated drugs.
Original language | English |
---|---|
Pages (from-to) | 5193-5201 |
Number of pages | 9 |
Journal | Journal of Proteome Research |
Volume | 14 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 4 2015 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2015 American Chemical Society.
ASJC Scopus Subject Areas
- General Chemistry
- Biochemistry
Keywords
- metabonomics
- nanosafety
- nanotoxicity
- nuclear magnetic resonance (NMR)
- polymer nanoparticles