Abstract
Catalyst-controlled approaches for the synthesis of S-stereogenic compounds have propelled significant advancements in asymmetric synthetic chemistry. In contrast, control over S-heteroatom (e.g., O) bond formation to access sulfinimidate esters remains an underexplored area. Drawing inspiration from recent progress in electrophilic amide activation, herein, we present a sulfinamide activation strategy for the enantioselective synthesis of S-chiral sulfinimidate esters. This method involves the activation of racemic sulfinamides by sulfonyl chloride, yielding a reactive aza-sulfinyl mixed anhydride intermediate. Employing a naturally occurring cinchonidine catalyst, the process achieves excellent enantiocontrol in the subsequent formation of S─O bonds with alcohols involving a dynamic kinetic resolution (DKR) process, resulting in sulfinimidate esters with excellent enantioselectivity. The catalytically obtained enantioenriched sulfinimidate esters offer a versatile platform for the construction of S-stereogenic frameworks, including sulfilimines and sulfoximines, with promising applications in asymmetric synthesis and drug discovery.
Original language | English |
---|---|
Journal | Angewandte Chemie - International Edition |
DOIs | |
Publication status | Accepted/In press - 2025 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2025 Wiley-VCH GmbH.
ASJC Scopus Subject Areas
- Catalysis
- General Chemistry
Keywords
- Enantioselectivity
- Organocatalysis
- Reaction mechanisms
- Sulfinamide
- Sulfur