Atomic rare earths activate direct O-O coupling in manganese oxide towards electrocatalytic oxygen evolution

Meng Li, Xuan Wang, Di Zhang, Yujie Huang, Yijie Shen, Fei Pan, Jiaqi Lin, Wei Yan, Dongmei Sun, Kai Huang, Yawen Tang, Jong Min Lee*, Hao Li, Gengtao Fu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)

Abstract

Activating the efficient electron transfer in oxygen evolution reaction (OER) by tuning the oxygen (O) electronic states near the Fermi level is essential to break the linear scaling limitation of OER intermediates. Herein, we construct a series of rare earth (RE) single atoms on MnO2 nanosheets with modulated oxygen states by an effective and universal Ar plasma (P)-assisted strategy (P-RE SAs@MnO2, RE = Gd, La, Ce, Tm, and Lu) to investigate the origin of RE-enhanced OER performance. Taking P-Gd SAs@MnO2 as a representative, the atomically dispersed Gd atoms on MnO2 assist the construction of localized asymmetric [Gd−O−Mn] units, which induces electron accumulation at surrounding oxygen sites by introducing the polarized ionic Gd−O bond. As a result, the P-Gd SAs@MnO2 delivers impressive OER performance with low overpotential (281 mV@10 mA cm −2; ηj10), robust long-term stability, and optimized activation energy (Ea = 32.07 kJ mol−1 at ηj10), which are superior to RE-free MnO2, commercial RuO2, and most Mn-based catalysts. Similar enhanced OER performance can also be found for other P-RE SAs@MnO2 (RE = La, Ce, Tm, and Lu). X-ray absorption and in situ Raman spectroscopy unveil the preferred electron accumulation at Mn−O, promoting the formation of terminal MnIV=O intermediates in OER. Theoretical calculations demonstrate that the construction of [Gd−O−Mn] unit endows the surface lattice unsaturated O site with the labile property, which assists the direct formation of (O−O) dimer for circumventing the universal scaling relation applied by the formation of *OOH. This work opens up a new avenue for the design of transition metal oxides with modulated oxygen state to break the limitation of the adsorbate evolution mechanism during OER.

Original languageEnglish
Article number109868
JournalNano Energy
Volume128
DOIs
Publication statusPublished - Sept 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2024 Elsevier Ltd

ASJC Scopus Subject Areas

  • Renewable Energy, Sustainability and the Environment
  • General Materials Science
  • Electrical and Electronic Engineering

Keywords

  • Asymmetric [Gd−O−Mn] unit
  • Direct O-O dimer formation
  • Lattice oxygen
  • Oxygen evolution reaction
  • Rare earth

Fingerprint

Dive into the research topics of 'Atomic rare earths activate direct O-O coupling in manganese oxide towards electrocatalytic oxygen evolution'. Together they form a unique fingerprint.

Cite this