Atomically Dispersed Intrinsic Hollow Sites of M-M1-M (M1 = Pt, Ir; M = Fe, Co, Ni, Cu, Pt, Ir) on FeCoNiCuPtIr Nanocrystals Enabling Rapid Water Redox

Yu Lu, Kang Huang, Xun Cao, Liyin Zhang, Tian Wang, Dongdong Peng, Bowei Zhang, Zheng Liu, Junsheng Wu*, Yong Zhang*, Chunjin Chen*, Yizhong Huang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

81 Citations (Scopus)

Abstract

Fabrication of advanced electrocatalysts acting as an electrode for simultaneous hydrogen and oxygen evolution reactions (i.e., HER and OER) in an overall cell has attracted massive attention but still faces enormous challenges. This study reports a significant strategy for the rapid synthesis of high-entropy alloys (HEAs) by pulsed laser irradiation. Two types of intrinsic atomic hollow sites over the surface of HEAs are revealed that enable engaging bifunctional activities for water splitting. In this work, a novel senary HEA electrocatalyst made of FeCoNiCuPtIr facilitates the redox of water at only 1.51 V to achieve 10 mA cm−2 and still remains steadily catalytic and durable after being subjected to a 1m KOH solution for more than 20 h. First-principles calculations reveal that the incorporation of Ir and Pt atoms with neighboring elements donate valence electrons to hollow sites weakening the coupling strength between adsorbate and alloy surface and, consequently accelerating both HER and OER. This work delivers a powerful technique to synthesize highly efficient HEA catalysts and unravels the formation mechanism of active sites across the surface of HEA catalysts.

Original languageEnglish
Article number2110645
JournalAdvanced Functional Materials
Volume32
Issue number19
DOIs
Publication statusPublished - May 9 2022
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2022 Wiley-VCH GmbH.

ASJC Scopus Subject Areas

  • Electronic, Optical and Magnetic Materials
  • General Chemistry
  • Biomaterials
  • General Materials Science
  • Condensed Matter Physics
  • Electrochemistry

Keywords

  • bifunctional electrocatalyst
  • high entropy alloy
  • high power pulsed irradiation
  • hollow active sites
  • OER and HER

Fingerprint

Dive into the research topics of 'Atomically Dispersed Intrinsic Hollow Sites of M-M1-M (M1 = Pt, Ir; M = Fe, Co, Ni, Cu, Pt, Ir) on FeCoNiCuPtIr Nanocrystals Enabling Rapid Water Redox'. Together they form a unique fingerprint.

Cite this