Abstract
To deliver on the potential outcome-based teaching and learning holds for engineering education, it is important for engineering courses to provide students with different types of deliberate practice opportunities that align to the program's learning outcomes. Working from these requirements, we increased the design and measurement intentionality of a digital signal processing (DSP) course. To align the course's learning outcomes more constructively with its assessment measures, we automated the process of classifying DSP questions according to learning outcomes by introducing a model that integrates topic modeling and machine learning. In this work, we explored the effect of pre-processing procedures in terms of stopword selection and word co-occurrence redundancy issue in question classification inferences. In this work, we proposed a customized variant of the Word Network Topic Model, q-WNTM, which is able to use its pre-classified DSP questions to reliably classify new questions according to the course's learning outcomes.
Original language | English |
---|---|
Title of host publication | 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 6996-7000 |
Number of pages | 5 |
ISBN (Print) | 9781538646588 |
DOIs | |
Publication status | Published - Sept 10 2018 |
Externally published | Yes |
Event | 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada Duration: Apr 15 2018 → Apr 20 2018 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2018-April |
ISSN (Print) | 1520-6149 |
Conference
Conference | 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 |
---|---|
Country/Territory | Canada |
City | Calgary |
Period | 4/15/18 → 4/20/18 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.
ASJC Scopus Subject Areas
- Software
- Signal Processing
- Electrical and Electronic Engineering
Keywords
- Assessment
- Extreme learning machine
- Learning outcomes
- Topic modeling