Abstract
The development of autonomous bioelectronic devices capable of dynamically adapting to changing biological environments represents a significant advancement in healthcare and wearable technologies. Such systems draw inspiration from the precision, adaptability, and self-regulation of biological processes, requiring materials with intrinsic versatility and seamless bio-integration to ensure biocompatibility and functionality over time. Silk fibroin (SF) derived from Bombyx mori cocoons, has emerged as an ideal biomaterial with a unique combination of biocompatibility, mechanical flexibility, and tunable biodegradability. Adding autonomous features into SF, including self-healing, shape-morphing, and controllable degradation, enables dynamic interactions with living tissues while minimizing immune responses and mechanical mismatches. Additionally, structural tunability and environmental sustainability of SF further reinforce its potential as a platform for adaptive implants, epidermal electronics, and intelligent textiles. This review explores recent progress in understanding the structure–property relationships of SF, its modification strategies, and its great potential for integration into advanced autonomous bioelectronic systems while addressing challenges related to scalability, reproducibility, and multifunctionality. Future opportunities, such as AI-assisted material design, scalable fabrication techniques, and the incorporation of wireless and personalized technologies, are also discussed, positioning SF as a key material in bridging the gap between biological systems and artificial technologies.
Original language | English |
---|---|
Journal | Advanced Materials |
DOIs | |
Publication status | Accepted/In press - 2025 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2025 Wiley-VCH GmbH.
ASJC Scopus Subject Areas
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering
Keywords
- adaptable implants
- autonomous bioelectronics
- bio-integration interface
- silk fibroin
- smart devices