Abstract
Transitional metal oxides are promising anode materials for sodium ion batteries (SIBs) due to their high theoretical capacities and material abundance; however, their sodium storage capability is significantly hindered by the sluggish sodiation/desodiation reaction kinetics. Herein, towards achieving fast and durable sodiation/desodiation reaction, Fe3O4 and Co3O4 nanocrystals encapsulated in carbon micro-spheres are synthesized via a biochemistry approach using recombinant elastin-like polypeptides containing hexahistidine tag (ELP16-His) followed by annealing. Fe3O4 and Co3O4 nanocrystals of approximately 5nm in size, which are uniformly dispersed in a carbon matrix, are obtained. The carbon-encapsulated metal oxides exhibit encouraging sodium storage capacities (657 and 246mAhg-1 at 0.1 and 2Ag-1, respectively, for carbon-encapsulated Fe3O4; 583 and 183mAhg-1 at 0.1 and 2Ag-1, respectively, for carbon-encapsulated Co3O4), and have a high capacity retention after 100 cycles at 0.5Ag-1. The superior electrochemical properties of the carbon-encapsulated metal oxide nanocrystals demonstrate their potential for use as anode materials for high-capacity, high-rate and durable sodium storage.
Original language | English |
---|---|
Pages (from-to) | 71-79 |
Number of pages | 9 |
Journal | Nano Energy |
Volume | 21 |
DOIs | |
Publication status | Published - Mar 1 2016 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2016 Elsevier Ltd.
ASJC Scopus Subject Areas
- Renewable Energy, Sustainability and the Environment
- General Materials Science
- Electrical and Electronic Engineering
Keywords
- 3D nanostructure
- Anode
- Elastin-like polypeptides
- Metal oxides
- Sodium ion battery