Biochemistry-derived porous carbon-encapsulated metal oxide nanocrystals for enhanced sodium storage

Yanping Zhou, Wenping Sun*, Xianhong Rui, Yan Zhou, Wun Jern Ng, Qingyu Yan, Eileen Fong

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)

Abstract

Transitional metal oxides are promising anode materials for sodium ion batteries (SIBs) due to their high theoretical capacities and material abundance; however, their sodium storage capability is significantly hindered by the sluggish sodiation/desodiation reaction kinetics. Herein, towards achieving fast and durable sodiation/desodiation reaction, Fe3O4 and Co3O4 nanocrystals encapsulated in carbon micro-spheres are synthesized via a biochemistry approach using recombinant elastin-like polypeptides containing hexahistidine tag (ELP16-His) followed by annealing. Fe3O4 and Co3O4 nanocrystals of approximately 5nm in size, which are uniformly dispersed in a carbon matrix, are obtained. The carbon-encapsulated metal oxides exhibit encouraging sodium storage capacities (657 and 246mAhg-1 at 0.1 and 2Ag-1, respectively, for carbon-encapsulated Fe3O4; 583 and 183mAhg-1 at 0.1 and 2Ag-1, respectively, for carbon-encapsulated Co3O4), and have a high capacity retention after 100 cycles at 0.5Ag-1. The superior electrochemical properties of the carbon-encapsulated metal oxide nanocrystals demonstrate their potential for use as anode materials for high-capacity, high-rate and durable sodium storage.

Original languageEnglish
Pages (from-to)71-79
Number of pages9
JournalNano Energy
Volume21
DOIs
Publication statusPublished - Mar 1 2016
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2016 Elsevier Ltd.

ASJC Scopus Subject Areas

  • Renewable Energy, Sustainability and the Environment
  • General Materials Science
  • Electrical and Electronic Engineering

Keywords

  • 3D nanostructure
  • Anode
  • Elastin-like polypeptides
  • Metal oxides
  • Sodium ion battery

Fingerprint

Dive into the research topics of 'Biochemistry-derived porous carbon-encapsulated metal oxide nanocrystals for enhanced sodium storage'. Together they form a unique fingerprint.

Cite this