Abstract
Octacosamicin A is an antifungal metabolite featuring a linear polyene-polyol chain flanked by N-hydroxyguanidine and glycine moieties. We report here that sub-inhibitory concentrations of streptomycin elicited the production of octacosamicin A in Amycolatopsis azurea DSM 43854T. We identified the biosynthetic gene cluster (oca BGC) that encodes a modular polyketide synthase (PKS) system for assembling the polyene-polyol chain of octacosamicin A. Our analysis suggested that the N-hydroxyguanidine unit originates from a 4-guanidinobutyryl-CoA starter unit, while the PKS incorporates an α-hydroxyketone moiety using a (2R)-hydroxymalonyl-CoA extender unit. The modular PKS system contains a non-canonical terminal module that lacks thioesterase (TE) and acyl carrier protein (ACP) domains, indicating the biosynthesis is likely to employ an unconventional and cryptic off-loading mechanism that attaches glycine to the polyene-polyol chain via an intermolecular amidation reaction.
Original language | English |
---|---|
Article number | e202300590 |
Journal | ChemBioChem |
Volume | 25 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2 2024 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2023 Wiley-VCH GmbH.
ASJC Scopus Subject Areas
- Biochemistry
- Molecular Medicine
- Molecular Biology
- Organic Chemistry
Keywords
- biosynthesis
- biosynthetic gene cluster
- guanidine
- ketosynthase
- polyketide synthase