Abstract
Naturally occurring hydrazones are rare despite the ubiquitous usage of synthetic hydrazones in the preparation of organic compounds and functional materials. In this study, we discovered a family of novel microbial metabolites (tasikamides) that share a unique cyclic pentapeptide scaffold. Surprisingly, tasikamides A-C (1-3) contain a hydrazone group (Câ Nâ" N) that joins the cyclic peptide scaffold to an alkyl 5-hydroxylanthranilate (AHA) moiety. We discovered that the biosynthesis of 1-3 requires two discrete gene clusters, with one encoding a nonribosomal peptide synthetase (NRPS) pathway for assembling the cyclic peptide scaffold and another encoding the AHA-synthesizing pathway. The AHA gene cluster encodes three ancillary enzymes that catalyze the diazotization of AHA to yield an aryl diazonium species (diazo-AHA). The electrophilic diazo-AHA undergoes nonenzymatic Japp-Klingemann coupling with a β-keto aldehyde-containing cyclic peptide precursor to furnish the hydrazone group and yield 1-3. The studies together unraveled a novel mechanism whereby specialized metabolites are formed by the coupling of two biosynthetic pathways via an unprecedented in vivo Japp-Klingemann reaction. The findings raise the prospect of exploiting the arylamine-diazotizing enzymes (AAD) for the in vivo synthesis of aryl compounds and modification of biological macromolecules.
Original language | English |
---|---|
Pages (from-to) | 1622-1633 |
Number of pages | 12 |
Journal | Journal of the American Chemical Society |
Volume | 144 |
Issue number | 4 |
DOIs | |
Publication status | Published - Feb 2 2022 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:©
ASJC Scopus Subject Areas
- Catalysis
- General Chemistry
- Biochemistry
- Colloid and Surface Chemistry