Abstract
With the complication of future communication scenarios, most conventional signal processing technologies of multi-user multiple-input multiple-output (MU-MIMO) become unreliable, which are designed based on ideal assumptions, such as Gaussian signaling and independent identically distributed (IID) channel matrices. As a result, this paper considers a generalized MU-MIMO (GMU-MIMO) system with more general assumptions, i.e., arbitrarily fixed input distributions, and general unitarily-invariant channel matrices. However, there is still no accurate capacity analysis and capacity optimal transceiver with practical complexity for GMU-MIMO under the constraint of coding. To address these issues, inspired by the replica method, the constrained sum capacity of coded GMU-MIMO with fixed input distribution is calculated by using the celebrated mutual information and minimum mean-square error (MMSE) lemma and the MMSE optimality of orthogonal/vector approximate message passing (OAMP/VAMP). Then, a capacity optimal multi-user OAMP/VAMP receiver is proposed, whose achievable rate is proved to be equal to the constrained sum capacity. Moreover, a design principle of multi-user codes is presented for the multi-user OAMP/VAMP, based on which a kind of practical multi-user low-density parity-check (MU-LDPC) code is designed. Numerical results show that finite-length performances of the proposed MU-LDPC codes with multi-user OAMP/VAMP are about 2 dB away from the constrained sum capacity and outperform those of the existing state-of-art methods.
Original language | English |
---|---|
Title of host publication | 2022 IEEE International Symposium on Information Theory, ISIT 2022 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2291-2296 |
Number of pages | 6 |
ISBN (Electronic) | 9781665421591 |
DOIs | |
Publication status | Published - 2022 |
Externally published | Yes |
Event | 2022 IEEE International Symposium on Information Theory, ISIT 2022 - Espoo, Finland Duration: Jun 26 2022 → Jul 1 2022 |
Publication series
Name | IEEE International Symposium on Information Theory - Proceedings |
---|---|
Volume | 2022-June |
ISSN (Print) | 2157-8095 |
Conference
Conference | 2022 IEEE International Symposium on Information Theory, ISIT 2022 |
---|---|
Country/Territory | Finland |
City | Espoo |
Period | 6/26/22 → 7/1/22 |
Bibliographical note
Publisher Copyright:© 2022 IEEE.
ASJC Scopus Subject Areas
- Theoretical Computer Science
- Information Systems
- Modelling and Simulation
- Applied Mathematics