Abstract
Intermolecular pnictogen bonding (PnB) catalysis has received increased interest in non-covalent organocatalysis. It has been demonstrated that organic electron-deficient pnictogen atoms can act as prospective Lewis acids. Here, we present a catalytic approach for the asymmetric synthesis of chiral PIII compounds by combining intramolecular PnB interactions and carbene catalysis. Our design features a pre-chiral phosphorus molecule bearing two electron-withdrawing benzoyl groups, resulting in the formation of a σ-hole at the P atom. X-ray and non-covalent interaction (NCI) analysis indicate that the model substrates exhibit intrinsic PnB interaction between the oxygen atom of the formyl group and the phosphorus atom. This induces a conformational locking effect, leading to the crystallization of the phosphorus substrate in a preferred conformation (P212121 chiral group). Under the catalysis of N–heterocyclic carbene, the aldehyde moiety activated by the pnictogen bond selectively reacts with an alcohol to yield the corresponding chiral monoester/phosphorus product with excellent enantioselectivity. This Lewis acidic phosphorus center, aroused by the non-polarized intramolecular pnictogen bond interaction, assists in conformational and selective regulations, providing unique opportunities for catalysis and beyond.
Original language | English |
---|---|
Article number | e202404477 |
Journal | Angewandte Chemie - International Edition |
Volume | 63 |
Issue number | 28 |
DOIs | |
Publication status | Published - Jul 8 2024 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2024 Wiley-VCH GmbH.
ASJC Scopus Subject Areas
- Catalysis
- General Chemistry
Keywords
- N-heterocyclic carbene
- P-Stereogenic Compounds
- Pnictogen Bond
- Synergistic catalysis