Cellular Glycocalyx Affects Nanoparticle Access to Cell Membranes and Uptake

Bram Bussin, Marshall G.G. MacDuff, Wayne Ngo, Warren C.W. Chan*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Understanding nanoparticle interactions with cells is fundamental to designing them for medical applications. Nanoparticles must interface with the cell surface to be bound and taken up. The glycocalyx is a carbohydrate layer coating the cell surface, rendering it negatively charged. Many researchers have noted that the glycocalyx affects nanoparticle uptake, but the mechanism remains unknown, Here, we investigate the interaction between the glycocalyx and nanoparticles at the cell surface in different cell types. The glycocalyx reduced the interactions between the nanoparticles and cells, thereby reducing cellular access, binding, and uptake. The magnitude of the effect is dependent on the nanoparticle charge. Fine-tuning the charge of nanoparticles can enhance the specificity of nanoparticle targeting. Understanding the role of the glycocalyx in nano-bio interactions will allow researchers to control the interactions of nanoparticles with the cell surface.

Original languageEnglish
JournalAdvanced Materials
DOIs
Publication statusAccepted/In press - 2025
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2025 Wiley-VCH GmbH.

ASJC Scopus Subject Areas

  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering

Keywords

  • charges
  • glycocalyx
  • macrophages
  • nanoparticles
  • sialic acids
  • targeted drug delivery

Cite this