Abstract
This study investigated the mechanism and effects of ultrasonic pretreatment followed by acidification on sludge dewaterability through looking at the changes of extracellular polymeric substances (EPS) content, composition and stratification. The results suggested sludge filterability was closely correlated with quantity of protein (R = 0.94, p < 0.01) and polysaccharide (R = 0.97, p < 0.01) present in loosely bound EPS rather than in soluble and tightly bound EPS. The fractions of polymers, especially tryptophan-like proteins and microbial by-product like material at molecular weight of 106–5 × 107 Da, were the key compounds related to sludge filterability. Ultrasonication may increase biopolymers concentrations that in turn deteriorate sludge filterability as evidenced at high ultrasonic power conditions. However, the subsequent acidification can reduce the concentrations of these organic compounds, reduce negative zeta potential, and increase floc size, thus increase sludge filterability. Combined ultrasonic-acid pretreamtent was more effective than the acidification treatment alone in reducing the concentrations of macromolecular compounds that may deteriorate sludge filterability.
Original language | English |
---|---|
Pages (from-to) | 470-478 |
Number of pages | 9 |
Journal | Water Research |
Volume | 105 |
DOIs | |
Publication status | Published - Nov 15 2016 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2016 Elsevier Ltd
ASJC Scopus Subject Areas
- Environmental Engineering
- Civil and Structural Engineering
- Ecological Modelling
- Water Science and Technology
- Waste Management and Disposal
- Pollution
Keywords
- Acidification
- Extracellular polymeric substances
- Size exclusion chromatography
- Sludge filterability
- Ultrasonication