Abstract
In this paper, anodic TiO2 nanotubes are blended into the TiO2 mesoporous films based on P25 nanoparticles to assemble a list of dye-sensitized solar cells (DSSCs) with different nanotube concentrations. The electron properties of transport and recombination in the fabricated DSSCs are studied by using electrochemical impedance spectroscopy and the open-circuit voltage decay technique under AM 1.5 illumination. Results indicate that the electron lifetime increases with increasing the concentration of the anodic TiO2 nanotubes, the electron transport time at a blending level of 10 wt% TiO2 nanotubes is short as compared to that at 0 wt%, and above 10 wt%, the electron transport time has a trend of becoming large. Due to the combining effects of the electron transport and recombination, the electron collecting efficiency and the electron diffusion length obtain maxima at a blending level of 10 wt% nanotubes, which results in a highest short circuit current and a maximum energy conversion efficiency at this point in the DSSCs. This study gives a clear explanation for the performance enhancement of TiO 2 particle-based DSSCs at a blending level of 10 wt% anodic TiO 2 nanotubes and for the performance decrease at a blending level over 10 wt% anodic TiO2 nanotubes from the angle of the electron transport and recombination. This study also supplies a feasible and easy way to improve the performance of particle-based DSSCs by restraining electron recombination and accelerating electron transportation.
Original language | English |
---|---|
Pages (from-to) | 7808-7813 |
Number of pages | 6 |
Journal | Journal of Alloys and Compounds |
Volume | 509 |
Issue number | 29 |
DOIs | |
Publication status | Published - Jul 21 2011 |
Externally published | Yes |
ASJC Scopus Subject Areas
- Mechanics of Materials
- Mechanical Engineering
- Metals and Alloys
- Materials Chemistry
Keywords
- Dye-sensitized solar cell
- Electrochemical impedance spectroscopy
- Energy conversion efficiency
- TiO nanotube