Abstract
Recently, anisotropic 2D materials, such as black phosphorus and rhenium disulfides (ReS2), have attracted a lot attention because of their unique applications on electronics and optoelectronics. In this work, the direct growth of high-quality ReS2 atomic layers and nanoribbons has been demonstrated by using chemical vapor deposition (CVD) method. A possible growth mechanism is proposed according to the controlled experiments. The CVD ReS2-based filed-effect transistors (FETs) show n-type semiconducting behavior with a current on/off ratio of ≈106 and a charge carrier mobility of ≈9.3 cm2 Vs-1. These results suggested that the quality of CVD grown ReS2 is comparable to mechanically exfoliated ReS2, which is also further supported by atomic force microscopy imaging, high-resolution transmission electron microscopy imaging and thickness-dependent Raman spectra. The study here indicates that CVD grown ReS2 may pave the way for the large-scale fabrication of ReS2-based high-performance optoelectronic devices, such as anisotropic FETs and polarization detection.
Original language | English |
---|---|
Pages (from-to) | 5423-5429 |
Number of pages | 7 |
Journal | Small |
Volume | 11 |
Issue number | 40 |
DOIs | |
Publication status | Published - Oct 1 2015 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ASJC Scopus Subject Areas
- Biotechnology
- Biomaterials
- General Chemistry
- General Materials Science
Keywords
- 2D materials
- anisotropy
- chemical vapor deposition
- field effect transistors
- rhenium disulphide