Comparative Heterochromatin Profiling Reveals Conserved and Unique Epigenome Signatures Linked to Adaptation and Development of Malaria Parasites

Sabine A. Fraschka, Michael Filarsky, Regina Hoo, Igor Niederwieser, Xue Yan Yam, Nicolas M.B. Brancucci, Franziska Mohring, Annals T. Mushunje, Ximei Huang, Peter R. Christensen, Francois Nosten, Zbynek Bozdech, Bruce Russell, Robert W. Moon, Matthias Marti, Peter R. Preiser, Richárd Bártfai*, Till S. Voss

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

85 Citations (Scopus)

Abstract

Heterochromatin-dependent gene silencing is central to the adaptation and survival of Plasmodium falciparum malaria parasites, allowing clonally variant gene expression during blood infection in humans. By assessing genome-wide heterochromatin protein 1 (HP1) occupancy, we present a comprehensive analysis of heterochromatin landscapes across different Plasmodium species, strains, and life cycle stages. Common targets of epigenetic silencing include fast-evolving multi-gene families encoding surface antigens and a small set of conserved HP1-associated genes with regulatory potential. Many P. falciparum heterochromatic genes are marked in a strain-specific manner, increasing the parasite's adaptive capacity. Whereas heterochromatin is strictly maintained during mitotic proliferation of asexual blood stage parasites, substantial heterochromatin reorganization occurs in differentiating gametocytes and appears crucial for the activation of key gametocyte-specific genes and adaptation of erythrocyte remodeling machinery. Collectively, these findings provide a catalog of heterochromatic genes and reveal conserved and specialized features of epigenetic control across the genus Plasmodium. Fraschka, Filarsky et al. performed a genome-wide characterization of heterochromatin organization across multiple species, strains, and life cycle stages of malaria parasites. This revealed that heterochromatic gene silencing is a conserved strategy to drive clonal variation of surface antigens and to control life cycle stage transitions and cell differentiation.

Original languageEnglish
Pages (from-to)407-420.e8
JournalCell Host and Microbe
Volume23
Issue number3
DOIs
Publication statusPublished - Mar 14 2018
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2018 The Authors

ASJC Scopus Subject Areas

  • Parasitology
  • Microbiology
  • Virology

Keywords

  • antigenic variation
  • epigenetics
  • gametocytes
  • gene silencing
  • heterochromatin
  • host-parasite interaction
  • HP1
  • malaria
  • Plasmodium
  • sexual differentiation

Fingerprint

Dive into the research topics of 'Comparative Heterochromatin Profiling Reveals Conserved and Unique Epigenome Signatures Linked to Adaptation and Development of Malaria Parasites'. Together they form a unique fingerprint.

Cite this