TY - JOUR
T1 - Comparison of the effect of coagulation and platelet function impairments on various mouse bleeding models
AU - Vaezzadeh, Nima
AU - Ni, Ran
AU - Kim, Paul Y.
AU - Weitz, Jeffrey I.
AU - Gross, Peter L.
PY - 2014
Y1 - 2014
N2 - Haemostatic impairments are studied in vivo using one of several murine bleeding models. However it is not known whether these models are equally appropriate for assessing coagulation or platelet function defects. It was our study objective to assess the performance of arterial, venous and combined arterial and venous murine bleeding models towards impaired coagulation or platelet function. Unfractionated heparin (UFH) or αIIbβ3 inhibitory antibody (Leo.H4) were administered to mice, and their effects on bleeding in saphenous vein, artery, and tail tip transection models were quantified and correlated with their effects on plasma clotting and ADP-induced platelet aggregation, respectively. All models exhibited similar sensitivity with UFH (EC50 dose = 0.19, 0.13 and 0.07 U/g, respectively) (95% CI = 0.14 - 0.27, 0.08 - 0.20, and 0.03 - 0.16 U/g, respectively). Maximal inhibition of ex vivo plasma clotting could be achieved with UFH doses as low as 0.03 U/g. In contrast, the saphenous vein bleeding model was less sensitive to αIIbβ3 inhibition (EC50 = 6.9 μg/ml) than tail transection or saphenous artery bleeding models (EC50 = 0.12 and 0.37 μg/ml, respectively) (95% CI = 2.4 - 20, 0.05 - 0.33, and 0.06 - 2.2 μg/ml, respectively). The EC50 of Leo.H4 for ADP-induced platelet aggregation in vitro (8.0 μg/ml) was at least 20-fold higher than that of the tail and arterial, but not the venous bleeding model. In conclusion, venous, arterial and tail bleeding models are similarly affected by impaired coagulation, while platelet function defects have a greater influence in models incorporating arterial injury.
AB - Haemostatic impairments are studied in vivo using one of several murine bleeding models. However it is not known whether these models are equally appropriate for assessing coagulation or platelet function defects. It was our study objective to assess the performance of arterial, venous and combined arterial and venous murine bleeding models towards impaired coagulation or platelet function. Unfractionated heparin (UFH) or αIIbβ3 inhibitory antibody (Leo.H4) were administered to mice, and their effects on bleeding in saphenous vein, artery, and tail tip transection models were quantified and correlated with their effects on plasma clotting and ADP-induced platelet aggregation, respectively. All models exhibited similar sensitivity with UFH (EC50 dose = 0.19, 0.13 and 0.07 U/g, respectively) (95% CI = 0.14 - 0.27, 0.08 - 0.20, and 0.03 - 0.16 U/g, respectively). Maximal inhibition of ex vivo plasma clotting could be achieved with UFH doses as low as 0.03 U/g. In contrast, the saphenous vein bleeding model was less sensitive to αIIbβ3 inhibition (EC50 = 6.9 μg/ml) than tail transection or saphenous artery bleeding models (EC50 = 0.12 and 0.37 μg/ml, respectively) (95% CI = 2.4 - 20, 0.05 - 0.33, and 0.06 - 2.2 μg/ml, respectively). The EC50 of Leo.H4 for ADP-induced platelet aggregation in vitro (8.0 μg/ml) was at least 20-fold higher than that of the tail and arterial, but not the venous bleeding model. In conclusion, venous, arterial and tail bleeding models are similarly affected by impaired coagulation, while platelet function defects have a greater influence in models incorporating arterial injury.
KW - Experimental animal models
KW - Haemorrhage
KW - Heparin
KW - Platelet aggregation inhibitors
UR - http://www.scopus.com/inward/record.url?scp=84905174491&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84905174491&partnerID=8YFLogxK
U2 - 10.1160/TH13-11-0919
DO - 10.1160/TH13-11-0919
M3 - Article
C2 - 24696126
AN - SCOPUS:84905174491
SN - 0340-6245
VL - 112
SP - 412
EP - 418
JO - Thrombosis and Haemostasis
JF - Thrombosis and Haemostasis
IS - 2
ER -