Abstract
Clay-based functional hydrogels were facilely prepared via a bioinspired approach. Montmorillonite (clay) was exfoliated into single layers in water and then coated with a thin layer of polydopamine (PDOPA) via in situ polymerization of dopamine under basic aqueous conditions. When a small amount of ferric salt was added into aqueous suspensions of the polydopamine-coated clay (D-clay), D-clay and Fe3+ ions could rapidly self-assemble into three-dimensional networks through the formation of coordination bonds. Consequently, supramolecular hydrogels were formed at very low D-clay contents. Rheological measurements show that the D-clay/Fe3+ hydrogels exhibit fairly elastic response in low stain range, and have self-healing capability upon removal of applied large stress. More importantly, the hydrogels can be used as adsorbents to effectively remove Rhodamine 6G (Rh6G), an organic pollutant, from water. UV-vis absorption spectra of the Rh6G-loaded hydrogels show bands related to π-π stacking interactions between the aromatic moieties of PDOPA and Rh6G, confirming the formation of PDOPA/Rh6G complex on the surface of D-clay.
Original language | English |
---|---|
Pages (from-to) | 1238-1244 |
Number of pages | 7 |
Journal | Langmuir |
Volume | 29 |
Issue number | 4 |
DOIs | |
Publication status | Published - Jan 29 2013 |
Externally published | Yes |
ASJC Scopus Subject Areas
- General Materials Science
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry