TY - JOUR
T1 - Comprehensive physicochemical and photovoltaic analysis of different Zn substitutes (Mn, mg, Fe, Ni, Co, Ba, Sr) in CZTS-inspired thin film solar cells
AU - Lie, Stener
AU - Guc, Maxim
AU - Tunuguntla, Venkatesh
AU - Izquierdo-Roca, Victor
AU - Siebentritt, Susanne
AU - Wong, Lydia Helena
N1 - Publisher Copyright:
© 2022 The Royal Society of Chemistry
PY - 2022
Y1 - 2022
N2 - The relatively stagnant efficiency of Cu2ZnSnS4 (CZTS) kesterite thin film solar cells has led to the exploration of alternative materials based on the kesterite structure. The unavoidable formation of Cu-Zn disorder-related defects and Sn-related deep defects such as SnZn and its cluster in CZTS prompt various attempts to substitute Zn. However, the underlying principles behind the selection of the cation substitutes remain unclear since most studies have been performed using different synthetic strategies. In this study, CXTS (X = Zn, Mn, Mg, Ni, Fe, Co, Ba, Sr) thin films are synthesized by a facile spray pyrolysis and sulfurization method, and their physical properties and device performance are compared. It is found that a majority of the compounds form a tetragonal structure (kesterite or stannite); however, Mg + CTS and Ni + CTS are unstable in their quaternary structure and form a mixture of secondary phases, while CBaTS and CSrTS form trigonal structures. From UV-Vis spectroscopy, it is found that CMnTS, CBaTS and CSrTS exhibit steep and clear absorption edges, which make them promising solar cell absorbers. Meanwhile, high carrier concentrations (>1018 cm−3) are observed for the compounds with transition metal substitutes (Mn, Mg, Ni, Fe, Co). Promising photovoltaic responses are observed in CMnTS, Mg + CTS, CBaTS and CSrTS, with CBaTS having the highest device performance possibly due to the lower band tailing, as observed from the photoluminescence and external quantum efficiency measurements. From these findings, correlations among the suitable cation substitutes for kesterite-inspired compounds are discussed and a guide for screening different cation substitutes for Zn in alternative I2-II-IV-VI4 solar cells is provided.
AB - The relatively stagnant efficiency of Cu2ZnSnS4 (CZTS) kesterite thin film solar cells has led to the exploration of alternative materials based on the kesterite structure. The unavoidable formation of Cu-Zn disorder-related defects and Sn-related deep defects such as SnZn and its cluster in CZTS prompt various attempts to substitute Zn. However, the underlying principles behind the selection of the cation substitutes remain unclear since most studies have been performed using different synthetic strategies. In this study, CXTS (X = Zn, Mn, Mg, Ni, Fe, Co, Ba, Sr) thin films are synthesized by a facile spray pyrolysis and sulfurization method, and their physical properties and device performance are compared. It is found that a majority of the compounds form a tetragonal structure (kesterite or stannite); however, Mg + CTS and Ni + CTS are unstable in their quaternary structure and form a mixture of secondary phases, while CBaTS and CSrTS form trigonal structures. From UV-Vis spectroscopy, it is found that CMnTS, CBaTS and CSrTS exhibit steep and clear absorption edges, which make them promising solar cell absorbers. Meanwhile, high carrier concentrations (>1018 cm−3) are observed for the compounds with transition metal substitutes (Mn, Mg, Ni, Fe, Co). Promising photovoltaic responses are observed in CMnTS, Mg + CTS, CBaTS and CSrTS, with CBaTS having the highest device performance possibly due to the lower band tailing, as observed from the photoluminescence and external quantum efficiency measurements. From these findings, correlations among the suitable cation substitutes for kesterite-inspired compounds are discussed and a guide for screening different cation substitutes for Zn in alternative I2-II-IV-VI4 solar cells is provided.
UR - http://www.scopus.com/inward/record.url?scp=85128485691&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85128485691&partnerID=8YFLogxK
U2 - 10.1039/d2ta00225f
DO - 10.1039/d2ta00225f
M3 - Article
AN - SCOPUS:85128485691
SN - 2050-7488
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
ER -