Abstract
Lossy compression introduces complex compression artifacts, particularly the blocking artifacts, ringing effects and blurring. Existing algorithms either focus on removing blocking artifacts and produce blurred output, or restores sharpened images that are accompanied with ringing effects. Inspired by the deep convolutional networks (DCN) on super-resolution, we formulate a compact and efficient network for seamless attenuation of different compression artifacts. We also demonstrate that a deeper model can be effectively trained with the features learned in a shallow network. Following a similar "easy to hard" idea, we systematically investigate several practical transfer settings and show the effectiveness of transfer learning in low level vision problems. Our method shows superior performance than the state-of-the-arts both on the benchmark datasets and the real-world use cases (i.e. Twitter).
Original language | English |
---|---|
Title of host publication | 2015 International Conference on Computer Vision, ICCV 2015 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 576-584 |
Number of pages | 9 |
ISBN (Electronic) | 9781467383912 |
DOIs | |
Publication status | Published - Feb 17 2015 |
Externally published | Yes |
Event | 15th IEEE International Conference on Computer Vision, ICCV 2015 - Santiago, Chile Duration: Dec 11 2015 → Dec 18 2015 |
Publication series
Name | Proceedings of the IEEE International Conference on Computer Vision |
---|---|
Volume | 2015 International Conference on Computer Vision, ICCV 2015 |
ISSN (Print) | 1550-5499 |
Conference
Conference | 15th IEEE International Conference on Computer Vision, ICCV 2015 |
---|---|
Country/Territory | Chile |
City | Santiago |
Period | 12/11/15 → 12/18/15 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.
ASJC Scopus Subject Areas
- Software
- Computer Vision and Pattern Recognition