Abstract
The release of sirolimus from a bi-layer biodegradable polymeric film is reported in this study. Approved drug-eluting metal stents use a thin polymer coating to control drug release, but the degree of control is limited. In a fully polymeric stent, the use of multilayers allows a range of release kinetics. A bi-layer system, with PLLA as the supporting layer and PLGA as the drug-eluting layer, was used in this study to simulate release of sirolimus from a stent. The results show that the release of sirolimus is diffusion and degradation-controlled, and that the amount of sirolimus loading does not affect its release kinetics. The release of sirolimus is, however, accelerated by the addition of a plasticizer, such as PEG, as water uptake is increased. An increased water uptake increases polymer degradation, and changes the dominant mode of release to degradation-control. The release of sirolimus can, on the other hand, be retarded by using a coating of a biodegradable polyester with a lauryl ester end group. Therefore, multilayered systems offer many options for controlling sirolimus release over months.
Original language | English |
---|---|
Pages (from-to) | 5588-5595 |
Number of pages | 8 |
Journal | Biomaterials |
Volume | 27 |
Issue number | 32 |
DOIs | |
Publication status | Published - Nov 2006 |
Externally published | Yes |
ASJC Scopus Subject Areas
- Bioengineering
- Ceramics and Composites
- Biophysics
- Biomaterials
- Mechanics of Materials
Keywords
- Controlled release
- Degradation control
- Diffusion control
- Multilayered
- PLGA
- Sirolimus