Abstract
Electric spring (ES) is an emerging smart grid technology for stabilizing the voltage and frequency in a power network. Being fast demand-side-management technology, ES has recently been extended to the medium-voltage (MV) level in an ac-dc power conversion system that connects the distribution line of 6.6/11/22 kV to a dc grid of 800 V. To interface with the MV power grid, a diode-clamped converter (DCC) and multiple dual active bridges (DABs) can be employed to construct the MV-ES system. The balance of the capacitor voltages is crucial for DCCs, and thereby also for the MV-ES system. Conventional voltage-balancing approaches for DCCs generally compromise the quality of the grid-side voltage and current, which is undesirable especially in high-voltage high-power occasions. In this article, a voltage-balancing control solution is proposed for the MV-ES system via the cooperation of the DCC and DABs. By taking advantage of the DABs in voltage balancing, the DCC can adopt simple modulation and ensure grid-friendly voltage and current injection into the grid. The proposed voltage-balancing solution is verified using simulations in a five-level system and with practical experiments for a three-level system.
Original language | English |
---|---|
Pages (from-to) | 11997-12009 |
Number of pages | 13 |
Journal | IEEE Transactions on Power Electronics |
Volume | 38 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 1 2023 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 1986-2012 IEEE.
ASJC Scopus Subject Areas
- Electrical and Electronic Engineering
Keywords
- Cooperative control
- distribution network
- electric spring (ES)
- solid-state transformer
- voltage balancing