Abstract
Hard carbon (HC) has become the most promising anode material for sodium-ion batteries (SIBs), but its plateau capacity at ≈0.1 V (Na+/Na) is still much lower than that of graphite (372 mAh g−1) in lithium-ion batteries (LIBs). Herein, a CO2-etching strategy is applied to generate abundant closed pores in starch-derived hard carbon that effectively enhances Na+ plateau storage. During CO2 etching, open pores are first formed on the carbon matrix, which are in situ reorganized to closed pores through high-temperature carbonization. This CO2-assisted pore-regulation strategy increases the diameter and the capacity of closed pores in HC, and simultaneously maintains the microsphere morphology (10–30 µm in diameter). The optimal HC anode exhibits a Na-storage capacity of 487.6 mAh g−1 with a high initial Coulomb efficiency of 90.56%. A record-high plateau capacity of 351 mAh g−1 is achieved, owing to the abundant closed micropores generated by CO2-etching. Comprehensive in situ and ex situ tests unravel that the high Na+ storage performance originates from the pore-filling mechanism in the closed micropores.
Original language | English |
---|---|
Article number | 2303064 |
Journal | Advanced Energy Materials |
Volume | 14 |
Issue number | 3 |
DOIs | |
Publication status | Published - Jan 19 2024 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2023 Wiley-VCH GmbH.
ASJC Scopus Subject Areas
- Renewable Energy, Sustainability and the Environment
- General Materials Science
Keywords
- closed pore
- CO-etching
- hard carbon
- plateau capacity
- sodium-ion batteries