Abstract
We investigate a novel approach for image restoration by reinforcement learning. Unlike existing studies that mostly train a single large network for a specialized task, we prepare a toolbox consisting of small-scale convolutional networks of different complexities and specialized in different tasks. Our method, RL-Restore, then learns a policy to select appropriate tools from the toolbox to progressively restore the quality of a corrupted image. We formulate a stepwise reward function proportional to how well the image is restored at each step to learn the action policy. We also devise a joint learning scheme to train the agent and tools for better performance in handling uncertainty. In comparison to conventional human-designed networks, RL-Restore is capable of restoring images corrupted with complex and unknown distortions in a more parameter-efficient manner using the dynamically formed toolchain1.
Original language | English |
---|---|
Title of host publication | Proceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 |
Publisher | IEEE Computer Society |
Pages | 2443-2452 |
Number of pages | 10 |
ISBN (Electronic) | 9781538664209 |
DOIs | |
Publication status | Published - Dec 14 2018 |
Externally published | Yes |
Event | 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States Duration: Jun 18 2018 → Jun 22 2018 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
ISSN (Print) | 1063-6919 |
Conference
Conference | 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 |
---|---|
Country/Territory | United States |
City | Salt Lake City |
Period | 6/18/18 → 6/22/18 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.
ASJC Scopus Subject Areas
- Software
- Computer Vision and Pattern Recognition