Abstract
Non-local self-similarity in natural images has been well studied as an effective prior in image restoration. However, for single image super-resolution (SISR), most existing deep non-local methods (e.g., non-local neural networks) only exploit similar patches within the same scale of the low-resolution (LR) input image. Consequently, the restoration is limited to using the same-scale information while neglecting potential high-resolution (HR) cues from other scales. In this paper, we explore the cross-scale patch recurrence property of a natural image, i.e., similar patches tend to recur many times across different scales. This is achieved using a novel cross-scale internal graph neural network (IGNN). Specifically, we dynamically construct a cross-scale graph by searching k-nearest neighboring patches in the downsampled LR image for each query patch in the LR image. We then obtain the corresponding k HR neighboring patches in the LR image and aggregate them adaptively in accordance to the edge label of the constructed graph. In this way, the HR information can be passed from k HR neighboring patches to the LR query patch to help it recover more detailed textures. Besides, these internal image-specific LR/HR exemplars are also significant complements to the external information learned from the training dataset. Extensive experiments demonstrate the effectiveness of IGNN against the state-of-the-art SISR methods including existing non-local networks on standard benchmarks.
Original language | English |
---|---|
Journal | Advances in Neural Information Processing Systems |
Volume | 2020-December |
Publication status | Published - 2020 |
Externally published | Yes |
Event | 34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online Duration: Dec 6 2020 → Dec 12 2020 |
Bibliographical note
Publisher Copyright:© 2020 Neural information processing systems foundation. All rights reserved.
ASJC Scopus Subject Areas
- Computer Networks and Communications
- Information Systems
- Signal Processing