Abstract
Highly active catalysts from the earth-abundant metals are essential to materialize the low-cost production of hydrogen through water splitting. Herein, nickel porous networks codoped with Cu and Fe prepared by thermal reduction of presynthesized Cu, Fe-codoped Ni(OH)2 nanowires are reported. The sample consists of nanoparticles of ∼80 nm, which form highly porous network clusters of ∼1 μm with a pore size of 10-100 nm. Among the various doped compositions, the NiCu0.05Fe0.025 porous network exhibits the best catalytic activity with a low overpotential of 60 mV for a hydrogen evolution reaction (HER) in 1 M KOH solution and a specific activity of 0.1 mA cm-2 at 117 mV overpotential calculated based on the electrochemical active surface area (ECSA). The density functional theory calculations reveal that codoping of Fe and Cu into the Ni lattice results in a shift of d-bands of nickel to lower energy levels and thus in the reduced hydrogen adsorption energy (ΔGH = -0.131 eV), which is close to ΔGH for Pt (-0.09 eV). When NiCu0.05Fe0.025(OH)2 nanowires is used as an oxygen evolution reaction (OER) catalyst and is coupled with NiCu0.05Fe0.025 porous networks for overall water splitting, the NiCu0.05Fe0.025∥NiCu0.05Fe0.025(OH)2 catalyst couple achieves a current density of 10 mA cm-2 at 1.491 V, similar to that of the Pt/C∥RuO2 couple and offers a negligible loss in the performance when operated at 20 mA cm-2 for 30 h.
Original language | English |
---|---|
Pages (from-to) | 2380-2389 |
Number of pages | 10 |
Journal | ACS Applied Materials and Interfaces |
Volume | 12 |
Issue number | 2 |
DOIs | |
Publication status | Published - Jan 15 2020 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2019 American Chemical Society.
ASJC Scopus Subject Areas
- General Materials Science
Keywords
- density functional theory calculation
- doping
- hydrogen evolution reaction
- overpotential
- specific activity
- Tafel slope
- water splitting