Deep cascaded Bi-network for face hallucination

Shizhan Zhu, Sifei Liu, Chen Change Loy*, Xiaoou Tang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

189 Citations (Scopus)

Abstract

We present a novel framework for hallucinating faces of unconstrained poses and with very low resolution (face size as small as 5pxIOD). In contrast to existing studies that mostly ignore or assume pre-aligned face spatial configuration (e.g. facial landmarks localization or dense correspondence field), we alternatingly optimize two complementary tasks, namely face hallucination and dense correspondence field estimation, in a unified framework. In addition, we propose a new gated deep bi-network that contains two functionality-specialized branches to recover different levels of texture details. Extensive experiments demonstrate that such formulation allows exceptional hallucination quality on in-the-wild low-res faces with significant pose and illumination variations.

Original languageEnglish
Title of host publicationComputer Vision - 14th European Conference, ECCV 2016, Proceedings
EditorsBastian Leibe, Jiri Matas, Nicu Sebe, Max Welling
PublisherSpringer Verlag
Pages614-630
Number of pages17
ISBN (Print)9783319464534
DOIs
Publication statusPublished - 2016
Externally publishedYes
Event14th European Conference on Computer Vision, ECCV 2016 - Amsterdam, Netherlands
Duration: Oct 8 2016Oct 16 2016

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9909 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference14th European Conference on Computer Vision, ECCV 2016
Country/TerritoryNetherlands
CityAmsterdam
Period10/8/1610/16/16

Bibliographical note

Publisher Copyright:
© Springer International Publishing AG 2016.

ASJC Scopus Subject Areas

  • Theoretical Computer Science
  • General Computer Science

Cite this