Abstract
Deep convolutional neural network has demonstrated its capability of learning a deterministic mapping for the desired imagery effect. However, the large variety of user flavors motivates the possibility of continuous transition among different output effects. Unlike existing methods that require a specific design to achieve one particular transition (e.g., style transfer), we propose a simple yet universal approach to attain a smooth control of diverse imagery effects in many low-level vision tasks, including image restoration, image-to-image translation, and style transfer. Specifically, our method, namely Deep Network Interpolation (DNI), applies linear interpolation in the parameter space of two or more correlated networks. A smooth control of imagery effects can be achieved by tweaking the interpolation coefficients. In addition to DNI and its broad applications, we also investigate the mechanism of network interpolation from the perspective of learned filters.
Original language | English |
---|---|
Title of host publication | Proceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 |
Publisher | IEEE Computer Society |
Pages | 1692-1701 |
Number of pages | 10 |
ISBN (Electronic) | 9781728132938 |
DOIs | |
Publication status | Published - Jun 2019 |
Externally published | Yes |
Event | 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States Duration: Jun 16 2019 → Jun 20 2019 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Volume | 2019-June |
ISSN (Print) | 1063-6919 |
Conference
Conference | 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 |
---|---|
Country/Territory | United States |
City | Long Beach |
Period | 6/16/19 → 6/20/19 |
Bibliographical note
Publisher Copyright:© 2019 IEEE.
ASJC Scopus Subject Areas
- Software
- Computer Vision and Pattern Recognition
Keywords
- Low-level Vision