Abstract
In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. A new pre-training strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability. By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of models with large diversity are obtained, which significantly improves the effectiveness of model averaging. The proposed approach improves the mean averaged precision obtained by RCNN [14], which was the state-of-the-art, from 31% to 50.3% on the ILSVRC2014 detection test set. It also outperforms the winner of ILSVRC2014, GoogLeNet, by 6.1%. Detailed component-wise analysis is also provided through extensive experimental evaluation, which provide a global view for people to understand the deep learning object detection pipeline.
Original language | English |
---|---|
Title of host publication | IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 |
Publisher | IEEE Computer Society |
Pages | 2403-2412 |
Number of pages | 10 |
ISBN (Electronic) | 9781467369640 |
DOIs | |
Publication status | Published - Oct 14 2015 |
Externally published | Yes |
Event | IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 - Boston, United States Duration: Jun 7 2015 → Jun 12 2015 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Volume | 07-12-June-2015 |
ISSN (Print) | 1063-6919 |
Conference
Conference | IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 |
---|---|
Country/Territory | United States |
City | Boston |
Period | 6/7/15 → 6/12/15 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.
ASJC Scopus Subject Areas
- Software
- Computer Vision and Pattern Recognition