DeepID-Net: Deformable deep convolutional neural networks for object detection

Wanli Ouyang, Xiaogang Wang, Xingyu Zeng, Shi Qiu, Ping Luo, Yonglong Tian, Hongsheng Li, Shuo Yang, Zhe Wang, Chen Change Loy, Xiaoou Tang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

391 Citations (Scopus)

Abstract

In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. A new pre-training strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability. By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of models with large diversity are obtained, which significantly improves the effectiveness of model averaging. The proposed approach improves the mean averaged precision obtained by RCNN [14], which was the state-of-the-art, from 31% to 50.3% on the ILSVRC2014 detection test set. It also outperforms the winner of ILSVRC2014, GoogLeNet, by 6.1%. Detailed component-wise analysis is also provided through extensive experimental evaluation, which provide a global view for people to understand the deep learning object detection pipeline.

Original languageEnglish
Title of host publicationIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
PublisherIEEE Computer Society
Pages2403-2412
Number of pages10
ISBN (Electronic)9781467369640
DOIs
Publication statusPublished - Oct 14 2015
Externally publishedYes
EventIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 - Boston, United States
Duration: Jun 7 2015Jun 12 2015

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume07-12-June-2015
ISSN (Print)1063-6919

Conference

ConferenceIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
Country/TerritoryUnited States
CityBoston
Period6/7/156/12/15

Bibliographical note

Publisher Copyright:
© 2015 IEEE.

ASJC Scopus Subject Areas

  • Software
  • Computer Vision and Pattern Recognition

Cite this