Abstract
Upregulation of highly reactive oxygen species (ROS) such as hypochlorite (ClO-) is associated with many pathological conditions including cardiovascular diseases, neuron degeneration, lung injury, and cancer. However, real-time imaging of ClO- is limited to the probes generally relying on fluorescence with shallow tissue-penetration depth. We here propose a self-assembly approach to develop activatable and degradable photoacoustic (PA) nanoprobes for in vivo imaging of ClO-. A near-infrared absorbing amphiphilic oligomer is synthesized to undergo degradation in the presence of a specific ROS (ClO-), which integrates a π-conjugated but ClO- oxidizable backbone with hydrophilic PEG side chains. This molecular architecture allows the oligomer to serve as a degradable nanocarrier to encapsulate the ROS-inert dye and self-assemble into structurally stable nanoparticles through both π-π stacking and hydrophobic interactions. The self-assembled nanoprobe exhibits sensitive and specific ratiometric PA signals toward ClO-, permitting ratiometric PA imaging of ClO- in the tumor of living mice.
Original language | English |
---|---|
Pages (from-to) | 4174-4182 |
Number of pages | 9 |
Journal | ACS Nano |
Volume | 11 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 25 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 American Chemical Society.
ASJC Scopus Subject Areas
- General Materials Science
- General Engineering
- General Physics and Astronomy
Keywords
- activatable probes
- near-infrared dyes
- photoacoustic imaging
- polymer nanoparticles
- reactive oxygen species
- self-assembly
- sensors